Carbon Conversion and Sequestration

Publications on the topic of Carbon Capture and Sequestration by Cornell faculty:

Gadikota, G. Multiphase carbon mineralization for the reactive separation of CO. Nature41570, 019-0158. [DOI: 10.1038/s41570-019-0158-3]

M. Liu, S. Seifert, and G. Gadikota,† (2019) Novel aqueous amine looping approach for the direct capture, conversion and storage of CO2 to produce magnesium carbonate, Sustainable Energy and Fuels. [DOI: 10.1039/C9SE00316A]

H. Asgar, V. Semeykina, I. Kuzmenko, I. Zharov, and G. Gadikota,† (2019) Thermally-induced morphological evolution of monodisperse spherical silica nanoparticles using in-operando X-ray scattering measurements, Colloids and Surfaces A: Physicochemical and Engineering Aspects. [DOI: 10.1016/j.colsurfa.2019.124260]

S. Mohammed and G. Gadikota,† (2019) Dynamic wettability alteration of calcite, silica and illite surfaces in subsurface environments: A case study of asphaltene self-assembly at solid interfaces,” Applied Surface Science. [DOI: 10.1016/j.apsusc.2019.144516]

Q. R. Miller, H. T. Schaef, J. P. Kaszuba, G. Gadikota, B. P. McGrail, and K. M. Rosso, † (2019) Quantitative Review of Olivine Carbonation Kinetics: Reactivity Trends, Mechanistic Insights, and Research Frontiers. Environmental Science & Technology Letters . [DOI: 10.1021/acs.estlett.9b00301">]

H. Asgar, J. Ilavsky, and G. Gadikota,† (2019) Designing CO2-responsive multi-functional nano-scale fluids with tunable hydrogel behavior for subsurface energy recovery. Energy & Fuels, 33 (7), 5988-5995. [DOI: 10.1021/acs.energyfuels.9b00445]

S. Mohammed and G. Gadikota,† (2019) CO2-induced displacement and diffusive transport of shale geofluids in silica nanopores of varying sizes," Journal of CO2 Utilization, 32, 37-45. [DOI:10.1016/j.jcou.2019.03.023]

T. Wang, A.-H. A. Park, Y. Shi, and G. Gadikota, † (2019) Carbon dioxide capture and utilization – closing the carbon cycle," Editorial in Energy & Fuels – Special Issue on Carbon Dioxide Capture and Utilization – Closing the Carbon Cycle. [DOI:10.1021/acs.energyfuels.8b04502

H. Asgar, S. Mohammed, I. Kuzmenko, and G. Gadikota, (2019) Relating structural and microstructural evolution to the reactivity of cellulose and lignin during alkaline thermal treatment with Ca(OH)2 for sustainable energy production integrated with CO2 capture,” ACS Sustainable Chemistry & Engineering (accepted) [DOI: 10.1021/acssuschemeng.8b06584]

M. Liu and G. Gadikota, (2018) Integrated CO2 capture, conversion and storage to produce calcium carbonates using an amine looping strategy," Energy and Fuels – Special Issue on Carbon Dioxide Capture and Utilization – Closing the Carbon Cycle . – invited article [DOI:10.1021/acs.energyfuels.8b02803]

S. Mohammed and G. Gadikota, (2019) The influence of CO2 on the structure and transport of asphaltenes confined in calcite nanopores, Fuel, 236, 769-777. [DOI: 10.1016/j.fuel.2018.08.124]

S. Mohammed and G. Gadikota,† (2018) The effect of hydration on the structure and transport properties of confined carbon dioxide and methane in calcite nanopores," Frontiers in Energy Research – Carbon Capture, Storage and Utilization, 6, 86. – invited article [DOI: 10.3389/fenrg.2018.00086]

G. Gadikota, (2018) Multi-scale X-ray scattering for probing chemo-morphological coupling in pore-to-field and process scale energy and environmental applications," in Small Angle Scattering and Diffraction, Editors: Dr. Margareth Kazuyo Kobayashi Dias Franco and Dr. Fabiano Yokaichiya. – invited book chapter. [DOI: 10.5772/intechopen.71473]

G. Gadikota, (2017) Connecting the morphological and crystal structural changes during the conversion of lithium hydroxide monohydrate to lithium carbonate using multi-scale X-ray scattering measurements," Minerals, 7(9). - invited contribution for the Special Issue: Carbon Capture and Storage via Mineral Carbonation DOI: 10.3390/min7090169]

M. Liu and G. Gadikota, (2018) Phase evolution and textural changes during the direct conversion and storage of CO2 to produce calcium carbonate from calcium hydroxide, Geoscience, 8 (12), 445 – invited contribution for the Special Issue: Carbon Sequestration [DOI: 10.3390/geosciences8120445]

M. Liu and G. Gadikota, (2018) Chemo-morphological coupling during serpentine heat treatment on carbon mineralization, Fuel, 227, 379-385 . [DOI:10.1016/j.fuel.2018.04.097]

Huber, E.J., Stroock, A.D., Koch, D.L., (2018) Modeling the dynamics of remobilized CO2 within the geologic subsurface. Int. J. Greenhouse Gas Control 70, 128-145. [DOI: 10.1016/j.ijggc.2018.01]

Huber, E.J., Stroock, A.D. and Koch, D.L., (2016) Analysis of a time dependent strategy to accelerate the residual trapping of sequestered CO2 in the geologic subsurface. Int. J. Greenhouse Gas Control 44, 185. [DOI: 10.1016/j.ijggc.2015.11.024]

Sánchez‐Murillo, R., Gazel, E., Schwarzenbach, E. M., Crespo‐Medina, M., Schrenk, M. O., Boll, J., & Gill, B.C., (2014) Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: An analog of a humid early Earth?. Geochemistry, Geophysics, Geosystems15(5), 1783-1800. [DOI: 10.1002/2013GC005213]

Schwarzenbach, E. M., Gazel, E., & Caddick, M. J., (2014) Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages. Contributions to Mineralogy and Petrology168(5), 1079. [DOI: 10.1007/s00410-014-1079-2]

Schwarzenbach, E. M., Gill, B. C., Gazel, E., & Madrigal, P.,  (2016) Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration. Lithos252, 92-108. [DOI: 10.1016/j.lithos.2016.02.017]

Park, O., & Fisher, E. M., (2016) Effect of oxycombustion diluents on the extinction of nonpremixed methane opposed-jet flames. Combustion Science and Technology, 188(3), 370-388. [DOI: 10.1080/00102202.2015.1119821]

Sun, T., B. D. A. Levin, M. P. Schmidt, J. J. L. Guzman, A. Enders, C. E. Martínez, D. A. Muller, L. T. Angenent, and J. Lehmann,. (2018) Simultaneous Quantification of Electron Transfer by Carbon Matrices and Functional Groups in Pyrogenic Carbon. Environmental Science and Technology 52, 8538–8547. [DOI: 10.1021/acs.est.8b02340]

Levin, B. D. A., D. A. Muller, T. Sun, L. T. Angenent, J. Lehmann, A. Enders, and J. J. L. Guzman, (2017) Rapid Electron Transfer by the Carbon Matrix in Natural Pyrogenic Carbon. Nature Communications 8, 14873. [DOI: 10.1038/ncomms14873]

Chia, C. H., P. Munroe, S. D. Joseph, Y. Lin, J. Lehmann, D. A. Muller, H. L. Xin, and E. Neves, (2012) Analytical Electron Microscopy of Black Carbon and Microaggregated Mineral Matter in Amazonian Dark Earth. Journal of Microscopy 245, (2012): 129–139. [DOI: 10.1111/j.1365-2818.2011.03553.x]

Milner, P. J., Siegelman, R. L., Forse, A. C., Gonzalez, M. I., Runčevski, T., Martell, J. D., ... & Long, J. R., (2017) A diaminopropane-appended metal–organic framework enabling efficient CO2 capture from coal flue gas via a mixed adsorption mechanism. Journal of the American Chemical Society, 139(38), 13541-13553. [DOI: 10.1021/jacs.7b07612]

Milner, P. J., Martell, J. D., Siegelman, R. L., Gygi, D., Weston, S. C., & Long, J. R., (2018) Overcoming double-step CO 2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2 (dobpdc). Chemical science, 9(1), 160-174. [DOI: 10.1039/c7sc04266c]

Forse, A. C., Milner, P. J., Lee, J. H., Redfearn, H. N., Oktawiec, J., Siegelman, R. L., Martell, J.D., Dinakar, B., Porter-Zasada, L.B., Gonzalez, M.I., & Neaton, J. B., (2018) Elucidating CO2 Chemisorption in Diamine-Appended Metal–Organic Frameworks. Journal of the American Chemical Society, 140(51), 18016-18031. [DOI: 10.1021/jacs.8b10203]